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Asymptotic Behavior of the Quantum Harmonic
Oscillator Driven by a Random Time-Dependent
Electric Field

Josselin Gamier1
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This paper investigates the evolution of the state vector of a charged quantum
particle in a harmonic oscillator driven by a time-dependent electric field. The
external field randomly oscillates and its amplitude is small but it acts long
enough so that we can solve the problem in the asymptotic framework corre-
sponding to a field amplitude which tends to zero and a field duration which
tends to infinity. We describe the effective evolution equation of the state vector,
which reads as a stochastic partial differential equation. We explicitly describe
the transition probabilities, which are characterized by a polynomial decay of
the probabilities corresponding to the low-energy eigenstates, and give the exact
statistical distribution of the energy of the particle.

1. INTRODUCTION

The quantum harmonic oscillator has been extensively studied, not only
because it is a system that can be exactly solved and a great pedagogical
tool, but it is also a very relevant system.(1) Indeed a lot of systems close
to a stable equilibrium can be described by an oscillator or a collection of
decoupled harmonic oscillators. Furthermore time-independent and time-
dependent modifications of this model have been investigated, handling by
the well-known perturbation theory. Literature contains a lot of applications
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where H0 is the time-independent Hamiltonian of the harmonic oscillator,
whose eigenvalue problem has been solved, and H1 is a small time-depen-
dent perturbation. The typical question one asks is the following. If at t = 0
the system is in the eigenstate i0 of H0, what is the probability for it to be
in some given eigenstate? Most results that have been obtained follow a
scheme in which the answers are computed in a perturbation series in
powers of H1.(1,2) Indeed it is exceptional to find closed-form expressions,
except for some very particular types of perturbations.(3) Nevertheless
rigorous results have been obtained for time-dependent perturbations of
the harmonic oscillator. Most of them concern periodic driven force. (4-6)

Although the problem is far less understood in the case of random pertur-
bations, literature contains some results about systems with randomly
time-dependent external driving force. A general class of quantum systems
in Markovian potentials has been treated in detail.(7,8) Under suitable con-
ditions on the dynamics of the random potential, it is shown in ref. 9 that
the spectrum of the quasi-energy operator is continuous. In ref. 10 the
authors study the long-time stability of oscillators driven by time-depen-
dent forces originating from dynamical systems with varying degrees of
randomness and focus on the asymptotic energy growth. In this paper we
consider a charged particle in a harmonic oscillator which is driven by a
weak random time-dependent electric field. We aim at studying this
problem by a rigorous and non-perturbative method. Our approach is
inspired by the works of Papanicolaou and its co-authors about waves in
random media.(11,12) The first step consists in determining the characteristic
scales of the problem at hand: oscillation frequency of the harmonic
oscillator, amplitude, coherence time and duration of the random perturba-
tions. We then study the asymptotic evolution of the state vector in the
asymptotic framework based on the separation of these scales. Our main
aim is to exhibit the asymptotic regime which corresponds to the case
where the amplitudes of the random fluctuations go to zero and the dura-
tion of the external field goes to infinity. We then describe explicitly the
effective random evolution of the state vector and the probability transi-
tions. The paper is organized as follows. In Section 2 we review the main
features of the harmonic oscillator, while we state our main convergence
result about the effective evolution of the state vector of the particle in
Section 3. Before proving this result in Section 5, we give remarkable
properties of the asymptotic system in Section 4.

and discussions of special types of perturbations: sudden, adiabatic, peri-
odic,....(2) The considered phenomena are described by the Hamiltonian:
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2. THE HARMONIC OSCILLATOR

2.1. The Main Equation

We consider the quantum oscillator, that is to say, a particle of mass
M whose state vector in the coordinate basis obeys the Schrodinger equa-
tion:(1)

where A is the Laplacian d2/dx2 + d2/dy2 + d2/dz2 and w is the oscillation
frequency. In order to transform this equation into a standard and dimen-
sionless form, we multiply the spatial coordinates x, y, z by r0

-1 : =
(Mw/h) 1 / 2 and the time t by to t0

-1 : = w, so that (2.1) now reads:

2.2. Eigenvalues and Eigenstates

The spectrum of the harmonic oscillator is pure point with state
energies (2p + 2q + 2r + 3)/2 and corresponding eigenstates:(1)

where the real-valued functions fp are the so-called Hermite-Gaussian func-
tions:

The family ( f p , g , r ) p , q , r e N is complete in the following sense.(13)

Proposition 2.1. 1. The ( f p , q , r ) P , q , r e N are an orthonormal and
complete set in L2(R3, C):

where 8 stands for the Kronecker's symbol.
2. (t, x, y, z ) ->e - i ( ( 2 p + 2 q + 2 r + 3 ) / 2 ) t f p , q , r (x , y, z) is a solution of (2.2)

for any p, q,reN.



so that it is a Hilbert space. The star denotes complex conjugation. We
remember the reader with the physical interpretation of the state vector. If
l is the state vector of the particle, then \ f ( i } p , q , r \ 2 is the probability that
the particle be observed in the state f p , q , r . If the particle is in the state j,
then the probability that the particle be observed in the elementary volume
dx dy dz is \f/\2 dx dy dz.

2.3. Functional Spaces

The state vector (resp. the eigenstate decomposition) naturally lies in
the space L2 (resp. I2). However, in order to prove the forthcoming results,
we shall need sharp controls of the state vector and its eigenstate decom-
position. It will then appear necessary to consider j and f ( l ) as lying in
suitable subspaces of L2 and I2, which will constitute a convenient
framework for our study. We define in the following these spaces.

We first introduce subspaces of the physical space L2(R3, C). The
space L2

a, ae N, is the space associated with the following norm:

where |( • || denotes the standard L2-norm, D0,c is the multiplication
operator D0,c,i : = Ci and D1,c is the derivation operator D1,ci :=di /dC.

We now introduce the subspaces of I2 corresponding to the eigenstate
representation. For a e R +, I2

a denotes the space of all the sequences c which
are decaying so that their weighted norms ||c||a, ae R+ are finite, where:

By Proposition 2.1, 0 is an isometry from L2(R3, C) onto I2, the space of
all the sequences ( c p , q , r ) p , q , r e N from N3 into C which are squared
integrable. I2 is equipped with its usual scalar product < • , • > and the
associated norm ||.||:

We define the eigenstate decomposition as the map 0: j € L 2 ( R 3 , C)
- > ( c p , q , r ) p , q , r e N , where cp,q ,r is defined by:
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Both L2
a and I2

a are Hilbert and they correspond with each other as stated
in the following proposition.

Proposition 2.2. The eigenstate decomposition 0 is a continuous
isomorphism from L2

a onto I2
a for any aeN. There exists a constant Ca

such that, for any j eL2
a:

Proof. The proof is given in Appendix A, |

2.4. The Harmonic Oscillator Driven by a Uniform
Electric Field

Let us assume that the particle possesses a charge qe. Suppose that we
apply an external and homogeneous electric field e0u, where u is a unit
vector of R3. Let us denote by e the dimensionless quantity:

It is well-known(14) that the state energies of this system are (2p + 2q +
2r + 3)/2 — e2/2 and the corresponding eigenstates fp(x — eux) fq(y — eu y)
fr(z — euz) for p,q,re N. It means that the spectrum is simply shifted by a
constant with respect to the spectrum of the pure harmonic oscillator.

3. EVOLUTION DRIVEN BY A TIME-DEPENDENT
ELECTRIC FIELD

3.1. Formulation of the Problem

Let us assume that the particle possesses a charge qe. Suppose that we
apply an external, homogeneous and time-dependent electric field e0m(t).
The dimensionless function m = (mx, my, mz) describes the time-fluctuations
of the field. This corresponds to an electrostatic potential e 0 ( xm x ( t ) +
ymy(t) + zmz(t)) and a potential energy -q ee0(xm x( t) +ymy(t)+ z m z ( t ) ) .
The dimensionless quantity e defined by (2.11) is a parameter which charac-
terizes the amplitudes of the fluctuations. The perturbed equation which gov-
erns the evolution of the state vector is then:

Existence and uniqueness of the solution will be stated in Proposition 3.1.



where the Be
c are the continuous linear operators from I2

a into I2
a-1 (for any

a > 1) given by:

The equation which governs the evolution of ce is:

and Be
y (resp. Be

f) acts on the q-index (resp. r-index).

We introduce also the normalized processes m e
c ( t ) = m c ( t / e 2 ) and l e ( t ) =

i ( t /e 2) , and the re-scaled a-algebra fe
r = F0

t/e2.

3.3. Statement of the Result

We aim at studying the evolution of the state vector i of the particle.
The initial state vector at time t = 0 is i0, which corresponds to the decom-
position c0 = c ( J 0 ) . By Proposition 2.2 it is equivalent to study the evolu-
tion of its decomposition onto the family of eigenstates ( f p , g , r ) p , q , r e N , i.e.,
the corresponding normalized coefficients ce:

3.2. Scales and Hypotheses

We assume that the amplitudes of the fluctuations are of order e << 1.
The R3-valued function m is assumed to be zero-mean, stationary and
ergodic process under P. We assume that the R-valued random processes
mx, my and mz are independent. We shall denote in the following by Fr0

r1

the a-algebra generated by a(m(r), T 0 < T < T 1 ) . We shall consider that the
process m is not only ergodic, but also o-mixing, i.e. that there exists a
function t — > 0 ( t ) vanishing as t -> + i and belonging to L 1 / 2 (R + ) such
that
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Proposition 3.1. 1. If c0el2
a for some a > 2, then for any e>0,

for almost every realization of m, there exists a unique solution in
C([0, i), I2

a of Equation (3.4).

2. If the initial state vector l0 e L2
a for some a > 2, for any e > 0, for

almost every realization of m, there exists a unique solution l in
C([0, i), L2

a) of Equation (3.1) and use have ( i e ( t , .) = l ( t / e 2 , • ) ) :

Proof. The first point follows from Lemma 5.2. The second point is
then a corollary of Proposition 2.2 and basic formulae (A.1) (see
Appendix A). |

We consider the infinite-dimensional system of linear differential equa-
tions starting from c(0) = c0:

where Wj,j= 1,..., 6 are independent standard Brownian motions, Ac and
Bj,c are the continuous linear operators from I2

a into I2
a-2 (a >2) defined

by:

BJ,y (resp. B J , z ) acts on the q-index (resp. r-index) and yc, Ce {x, y,z}, is
given by:

yc is nonnegative because it is proportional to the 1-frequency evaluation
of the spectral density function by the Wiener-Khintchine theorem.(15) We
can now state our main result.



possesses nice convergence properties in the space of the cad-lag functions
D (the so-called right-continuous with left-limits functions) equipped with
the Skorohod topology ([T] stands for the integral part of a real number T).

Proposition 4.1. The processes $ converge in distribution in
D([0, i ) ,L 2

a to i:

Theorem 3.2. Let us assume that c0 belongs to I2
a for some a >2.

1. There exists a unique solution c in C([0, i), I2
a) of Equation (3.7).

2. The processes ce converge in distribution in C([0, i), I2
a) to the

continuous Markov process c solution of (3.7) as e->0.

The |cp,q,r|
2(t) given by (3.7) represent the probabilities that the

charged particle driven by the random field em be observed in the state
fp,q,r at time t/e2 in the limit e ->0. Theorem 3.2 is very useful since it
allows us to apply the powerful Ito's stochastic calculus to compute all
relevant quantities. Before turning to the Section 5 which is devoted to the
proof of this theorem, we give remarkable properties of the asymptotic
system.

4. SOME PROPERTIES OF THE LIMIT SYSTEM

4.1. Asymptotic Evolution of the State Vector

First we want to underline that the assertion "the processes je con-
verge in C([0, i), L2

a)" does not hold true, because of the fast varying
phases of the eigenstate decomposition of the state vector (3.6). However,
the state vector presents the remarkable property that it is time-periodic in
the case of the perfect harmonic oscillator. This time period is of duration
4n. As a consequence, if we plot the particle "stroboscopically," i.e., at the
regularly spaced times 4nk, keN, then the corresponding discontinuous
state vector defined by:
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where c is described by (3.7). i is the unique solution of:

starting from i(0, x, y,z) = i 0 (x , y, z).

More generally, let us fix t e [0, 4s]. If we plot the particle every times
(T + 4nk), keN and we denote by Se

r the corresponding state vectors at
these times:

then the processes $e
r converge in distribution in D([0, i), L2

a) to $T:

The convergence at hand is uniform with respect to r. Indeed the processes
(De

r)Tr[0,4n] actually converge to ( i T ) T e [ 0 , 4 n ] in C([0, 4n], D([0, i), L2
a)).

The asymptotic state vector iT can be derived from i through the follow-
ing equation, in which t is frozen:

4.2. Conversion of the Fundamental State

We focus here into the following problem. We assume that the state of
the particle is the lowest order eigenstate f0,0,0 at time t = 0. We want to
solve the question what is the probability that the particle be in the state

fp,q,r at normalized time t.



where ( H x C ) p , q , r = p C p - 1 , q , r - ( 2 p + 1) Cp,q,r + (p + 1) Cp + 1,q,r, and Hy

(resp. Hz) acts on the q-index (resp. r-index). Solving this equation
provides the result. |

Proposition 4.2 shows that the decay of the fundamental state obeys a
power law. It means that, starting from the fundamental eigenstate f0,0,0,
the probability that the particle be in this state at time t decreases at
rate t-3.

4.3. Conversion of any Initial State

The result presented in Proposition 4.2 can be generalized to any
initial configuration.

Proposition 4.3. If the initial state vector belongs to L2
2, then the

limit process c satisfies for any p , q , r e N and for every time t:

where XP0,p(t) is given by:

Proof. The proof consists in solving the homogeneous linear system
(4.8) with any initial condition. This is just long but straightforward
recalculations. |

Proof. We denote C(t) = ( E [ \ c p , q , r \ 2 ( t ) ] ) p , q , r e N . It follows from
(5.44) and Ito's formula that C satisfies the homogeneous linear equation
starting from C(0) = d 0 p S 0 q d 0 r :

Proposition 4.2. If c0p,q,r = sp0sq0sr0, then the limit process c
satisfies for any p, q, r e N:
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4.4. Energy of the Particle

We have already seen that the processes ie do not converge globally
in C([0, i), L2). However we can explicitly estimate the variations of an
infinity of observables which are constants of motion for the unperturbed
Schrodinger equation. We give in the following proposition the first two of
them.

Proposition 4.4. Let us denote:

If l0eL2
2 , then the quantities Me

2,x and Me
4,x converge in C([0, i), R + )

to the processes M2, x and M4, x given by:

where the M0
j,x's correspond to i/r0 and

As a consequence the mean values of Mj,x obey:

Similar results hold true for M J , y and Mj,Z.



The linear growth of the averaged energy E[M2 , c(t)] was also estab-
lished in ref. 10. In this paper ( 1 0 ) the authors considered a one-dimensional
harmonic oscillator and conjectured that "the energy behaves like the
square of a Gaussian random variable with variance proportional to time
when the random potential m(t) has a positive Lyapunov exponent." They
proved the conjecture for an explicit example. From (4.11, 4.16) we can
claim that, whenever m ( t ) i s o-mixing with o e L1/2(R +), the energy regarded
as a time-process behaves like the sum of the squares of two independent
and identically distributed Brownian motions. As a consequence, if R0

1,x =
I0

1,x = 0, then at some fixed time t the energy M 2 , x ( t ) obeys an exponential
distribution with density:

Furthermore, if R0
1,c = I0

1,c = 0 for c = x, y, z, then the total energy
M2 : = M2,x + M 2 , y + M2 , z for the three-dimensional harmonic oscillator
behaves like the sum of the squares of six independent Brownian motions.

where c is given by (3.7). Applying Ito's formula and standard formulae
of stochastic calculus we get the representations of Mj,x in terms of the
Brownian motions. |

The expressions of the above Proposition can be simplified in the case
where the initial state vector is some eigenstate fP0,q0,r0.

Corollary 4.5. With the same notations as in Proposition 4.4, if

c0p,q,r = spp0sqq0srr0 then:

Proof. Expressing Me
j, x in terms of the coefficients ce, we get from

Theorem 3.2 that Me
2,x and Me

4,x converge to the processes M 2 , x and M4 , x

given by:
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If Vx = Vy = Vz = V. then at some fixed time t the total energy M2(t) obeys
a Gamma distribution with density:

4.5. Interpretation of the Transition Probabilities in Terms
of a Jump Process

The transition probabilities C p , q , r ( t ) := E[ |cp , q , r |
2 ( t ) ] satisfy the

system (4.8) starting from the initial configuration Cp , q , r(0)= \c0p,q,r \
2. We

shall show that they can be regarded as the statistical distribution of a
jump process. We denote y = ( y x , y y , y z ) , ex = ( 1,0,0), ey = (0, 1,0), ez =
(0,0,1), and u = ex + ey + ez = (l, 1, 1). Let N(t) = ( N x ( t ) , N y ( t ) , N z ( t ) ) be
the Markov process with state space E— N3 and infinitesimal generator L:

where V-
c g(N) = g ( N - e c ) - g(N) and V c

+ g ( N ) = g(N + ec)- g(N).
( N ( t ) ) t > 0 is a time-homogeneous jump process defined on some probability
space (Q, F, P). It is a birth-and-death process of three distinct and inde-
pendent populations with birth rates tc

n = 2yc(n +1) and death rates
uc

n = 2yc n. It means that the population levels change only through tran-
sitions to their nearest neighbors. If at time t the process is in state
n = (nx,ny, nz), then the probability that between t and t + h the transition
n — > ( n x + 1, ny, nz) occurs equals Xx

nh + o(h), and the probability of
n-> (nx— 1, ny, nz) equals ux

nh + o(h). The same holds for the other indices.
The probability that during (t, t + h) more than one change occurs is o(h).
It can then be checked that C p , q , r ( t ) = P ( N x ( t ) = p, Ny(t) = q, N z ( t ) = r),
where P stands for the distribution of the paths ( N ( t ) ) t > 0 starting at time
t = 0 with the initial distribution P ( N x ( 0 ) = p, Ny(0)=q, Nz(0) = r) =
Cp,q,r (10). This interpretation of the transition probabilities may help to
solve problems. Let us examine one of them. The explicit results of Subsec-
tion 4.2. show that the decrease rate of the fundamental mode is ~t-3. We
shall prove here that this is a very general feature. In the following we
assume that yc = 0 and consequently yc > 0 for £ = x, y, z.

Proposition 4.6. We denote:



where a = ( a x , a y , a z ) e R 3
+ . For any geC 3 (R 3 + , R) with bounded

derivatives, the process

is a Fs
t -martingale. Applying this statement with gc(a) = ac for £ = x, y

and z yields:

Ns is a Markov process with infinitesimal generator .Ls:

This proposition establishes that the probability that the particle be
observed in some given eigenstate decreases as t-3.

Proof. This proposition can be established directly by studying the
exact formulae of Proposition 4.3. However we shall give a proof which is
independent from these results and which is based upon the above inter-
pretation of the limit system in terms of the jump process N ( t ) .

Step 1. The re-scaled process. Let us denote by Ns the re-scaled
Fs

t : = Ft/s
0-adapted process defined by:

which is proportional to the probability that the particle be observed in the
eigenstate f[ax/S], [ay/s], [az/s] at time t/S in the asymptotic regime (c is the
solution of (3.7)).

If the initial state vector belongs to L2
2, then Ps

t converge as a function
of C((0, i), L 1 ( R 3

+ ) ) to the continuous function Pt given by:

Gamier224



this yields that for any functions g,h1,...,hneC3
b and for any

0<T1< . . . < T n < t 0 < t 1 :

where J is the generator defined by:

If we consider a sub-sequence Sp such that the processes Nsp converge in
distribution to some limit N as p -> i, then we get:

Step 2. Tightness. In order to prove the tightness of the process N3

in D([0, i), R3), we use the Aldous criteria (see Lemma 5.6) which is
fulfilled in view of (4.26) and (4.28).

Step 3. Convergence. Expanding the right-hand side of (4.24), we get
that there exists a constant K such that:

Taking g c(a) = ac, this establishes in particular that:

Besides, by Doob's inequality:
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which means that N is solution of the martingale problem associated with
the generator S. This problem is well-posed and admits a unique solution,
which is the distribution of a Markov diffusion process with infinitesimal
generator & and continuous paths in C([0, i), R3). This consequently
yields the convergence in distribution of Ns to N as S -> 0.

If the initial decomposition c0 belongs to I2
2, then Ns starts from the

distribution P(N s(0) =Sp, Sq, Sr) = |c0p,q,r |
2, and consequently, in the limit

S->0, N starts from _the initial distribution P(N(0) = (0, 0,0)) = 1.
Applying the generator S, we then find that, for any (nx, ny, nz) e R3:

It proves that the measures Ps
t dax day daz weakly converge to

Pt dax day daz as S -> 0. With some more work we can show the con-
vergence as stated in the Proposition. |

4.6. Position of the Particle

We can also give some piece of information about the position of the
particle. Since the state vector periodically oscillates, we cannot deal with
the instantaneous position, but we can efficiently work on the locally time-
averaged position of the particle.

Proposition 4.7. Let us assume that c0el2
2. For any n < 4 , we

denote by xn
r the mean nth power of the position of the particle in the

x-direction at time r + 4n[t/4ne2]:

Let x" be the mean nth power of the position of the particle time-averaged
over a local period 4n:

Then the processes xne converge in distribution in C([0, i), (R) to the pro-
cesses x" defined by:

where the M n , x ( t ) ' s are given by (4.11, 4.12).



The result then follows obviously from Proposition 4.4. |

5. PROOF OF THE MAIN THEOREM

This section is devoted to the proof of Theorem 3.2. For the sake of
simplicity in the notations we establish the result in the case of space
dimension 1. We can easily extend the proof to any finite dimension, so
that the result as stated in Theorem 3.2, which holds in space dimension 3,
is actually a straightforward generalization of the one-dimensional case. In
view of the following lemma,(16) it is sufficient to show that the processes
ce converge in distribution in Df[0, i), I2

a).

Lemma 5.1. Let (E, d) be a metric space and T>0. If fn, n> 1 and
f are functions in C([0, T ] , E ) such that the sequence fn converges in
D([0, T], E) to f then the sequence fn actually converges in C([0, T], E)
to f. |

where c is given by (3.7) and BN is defined recursively by:

where jr is defined by (4.6) and (4.3). If we choose g(x, y, z) = xn, then we
get that x" converges in C([0, i), R) to the process xn defined by:

We find from the results of Subsection 4.1. that the processes Ge converge
in distribution in C([0, i), (R) to G defined by:

Proof. We shall prove a more general result. Let us assume that
c0eI2

a for some a >2. Let g be a smooth function of C(R3 , R) with polyno-
mial growth of degree at most 2a. We can study the asymptotic behavior
of the following process, function of the position of particle:
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5.1. The €-Process

We introduce a sequence of auxiliary processes ce ,NeD([0, i), l2
a),

which are finite-dimensional approximations of ce, the ce ,N taking their
values in the finite-dimensional subspace HN of l2

a:

Defining the projection UN from l2
a onto HN by (nNc)p = cp if 0<p<N

and 0 otherwise, we denote by ce,N the unique solution in C([0, i), HN)
of:

where Be is given by (3.5) (we drop the index x from the notations). Exis-
tence and uniqueness are obvious since the evolution of ce,N is actually
governed by a finite-dimensional system of linear differential equations.
Indeed it can be readily checked that cp

e,N = cp
e,N for 0 < p < N, where

ce,NeD([0, i), CN+1) is governed by the linear system:

Fe,N is the linear mapping from CN + 1 into CN + 1 given by: Fe,N = nNoBe°
UN

-1 (UN
-1 maps CN+1 into l2

a by completing any finite-dimensional vector
with zeros).

Lemma 5.2. Assume that c0el2
a for some ae N, a> 1.

1. There exists a unique solution c' in C([0, i), l2
a) of (3.4) almost

surely. Moreover, for any t > 0, there exists a constant Ka,t such that:

2. For any d>0, t>0, there exists a function K d , a , t ( N ) which goes
to 0 as N->i such that:

3. ||ce(t)|| = ||c0|| for any t>0 almost surely.



Besides, since (1 +p)k — p k < k ( 1 + p } k - 1 , straightforward calculations
establish that, for any cel2

a+1, for j= 1,2:

For p = N, for j = 1, 2, we have:

On the other hand, for p = 0,..., N - 1, for j = 1, 2:

By convention c_2 = c_ 1=0. The time-derivatives of |cp
e,N|2 can be

expressed in terms of Jj and He
j. On the one hand, for p = 0,..., N,

Proof. We first introduce some notations. If ( c p ) p e N is a sequence of
complex numbers, then we define for any pe N:
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If c e HN, then we can substitute the partial sum ZN
p=0 for the infinite sum

in the left-hand side of (5.10) and (5.12) for J1, J2 and h2. However we
have to take care that in the case of h1 we have:

We remember the reader with the techniques developed by Kurtz(17) and
Kushner.(18) Let T0>0 be fixed. Me denotes the set of all Fe-measurable
functions f(t) for which sup t<T0 E[ | f ( t ) | ] < i. Following Kurtz,(17) define
the limit p — lim and the operator Ae as follows. Let f ( • ) and fs( •) be in
Ms for each § > 0. Then we say that f = p — lims f

s if and only if:

We say that f ( • ) e D ( A e ) , the domain of Ae, and Aef = g if f ( • ) and g( •)
are in Me and

For purposes of the sequel, the most useful property of Ae is given by the
following Proposition:(17)

Proposition 5.3. Let f ( . ) e D ( A e ) . Then f ( t ) - f t
0 A e f ( u ) du is a

Fe-martingale.

We denote by fe
j the Fe-adapted functions:

Since m is o-mixing, f e
j ( t ) e L i ( Q ) , i.e. | | f e

j ( t ) | | i <f i , where:

Furthermore f e
j e D ( A e ) and



is a Fe-martingale. For p = N, we must add some correction in order to
take into account (5.9) so that:

is a Fe -martingale. Expanding ||ce,N||2a in terms of Mp
e,N, p = 0,...,N, we

then get by taking into account (5.13):

Let Te be a family of Fe-adapted stopping times. We aim at studying the
process |cp

e,N|2, whose time-derivative (5.7) exhibits a O(e - 1)-term. We
apply the perturbed test function method (see ref. 18, Section 6) in order to
get rid off this O(e -1)-term. We therefore consider the function |cp

e,N|2 +
eE2

j=1 ( J j C
e , N ) p f e

j , and we get from Proposition 5.3 and (5.8, 5.18) that,
for any p = 0,..., N-1:

Step 1: For any t >0, there exists a constant Ka,t such that, for any
family of Fe -adapted stopping times Te:
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where C0 = \\m\\i fi. Applying the estimates (5.10), (5.11) and (5.12):

where Ca = (3a22a + 4a23a) C0. Denoting Ka = Ca + a2a + 1C0, and replacing
\\ce,N\\2

a for \\ce,N\\2
a-1 and \ \c e , N \ \2

a - 1 / 2 in the right-hand member, this
inequality can be simplified:

so that we have for any e < (2a + 2 a f i )
- 1 :

Applying Gronwall's lemma completes the proof of the first step of the
lemma, since \\cN

0\\a is uniformly bounded by ||c0||a.

Step 2: For any t>0, there exists a function K a , t ( k ) which goes to
0 as k -> i such that, for any family of Fe-adapted stopping times Te:

For any cel2
a we denote ||c||2a,k : = Zi

p=k(1 + P)a |c p \ 2 . Note that ||c||a,k<
||c||a,k-1<...< ||c||a,0

 := ||c||a. From the martingale property of Mp
e,N and

the estimates (5.10), (5.11), (5.12) and (5.13), we have for any
e < ( 2 a + 2 a f i )

- 1 :



Consequently, for any k>k1 + 2k0+1, we have E[||ce ,N | |2
a,k(t A T e ) ] <n,

which yields (5.26).

Step 3: For any d>0, t>0, there exists a function K S , a , t ( N ) which
goes to 0 as N -> i such that:

sup sup P( sup \ \ c e , N + N ' ( s ) - c e , N ( s ) \ \ a > d ) < K S , a , t ( N ) (5.32)
N'eN ee(0, 1) se[0,t]

Let us fix some T0 > 0 and N' > 3. Using the perturbed test function method
as in Step 1, we show that, for any p = 0,..., N — 1 , N + 2,..., N+ N' — 1:

On the other hand there exists some k1 such that, for any k > k 1 :

Let us fix t > 0. Let n > 0. On the one hand there exists some k0 such that:

Applying (5.19) then establishes that, for any e < ( 2 a + 2 a f i )
- 1 and for any W:

Iterating this inequality we get that, for any k > 2k0 + 1:
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is a Fe-martingale. For p = N:

is a Fe-martingale. For p = N+ 1:

is a Fe-martingale. For p = N+ N':

is a Fe-martingale. Let Te be a Fe-adapted stopping time such that
Te<T0 almost surely. We then get from (5.10), (5.11), (5.12) and (5.13)
that, for any e < ( 2 a + 2 a f i ) - 1 :

Applying the inequality ab < 1/2a2 + 1/2b2 and (5.26) in the case k = N to the
last term of the right-hand side of this inequality yields:



Therefore, as N-> i, ce,o(0) - ce,o(N) = ZN-1
j=0 ce,o(j)-ce,o(j+1) converge in

C([0,t],l2
a) to some element of this space that we express in the form

ce,o(0)-ce. Since A and Be
j are continuous from l2

a into l2
a-1, ce is found to

be a strong solution of (3.4) in I2. Letting N-> i in (5.19), we get that ce

belongs to l2
a and satisfies (5.4). Besides, if ce

1 and ce
2 are two solutions

in l2
a, then Step 1 establishes that ||ce

1 - c
e
2 ||a (t) = 0 for every t, which yields

uniqueness. The second point of the lemma is proved by letting N' —> i in
(5.32). The third and last point is then straightforward since Re<Bec, c> = 0 for
any cel2

1. |

By Borel-Cantelli's lemma, for almost every w, there exists N ( w ) such that
N > N ( w ) implies that:

We can extract a subsequence o ( N ) such that:

then we establish the statement of the third step.

Step 4: There exists a unique solution ce in C([0, i), l2
a;) of (3.4),

which also satisfies (5.4).

If we take

goes to zero as N -> i uniformly with respect to N'. Applying Gronwall's
lemma consequently establishes:

where K'a = Ka + a2aC0. On the one hand, K a , t ( N ) goes to zero as N-> i.
On the other hand, by definition of cN

0:
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5.2. The Limit Process

We consider the system of linear differential equations (3.7) starting
from c(0) = c0:

We also denote by C N e C ( [ 0 , i), CN + 1) the processes which are defined
as the solutions of the finite-dimensional linear systems:

where the linear mappings FN
j and GN are defined by FN

j=UN oB jo UN
-1

and GN
j= UNoA °UN

-1 respectively. We finally introduce the auxiliary pro-
cesses CN e C([0, i), l2

a) given by cN
p= cN

p for p < N and 0 otherwise.

Lemma 5.4. 1. If c0el2
a, a >2, then there exists a unique solution

c in C([0, i), l2
a) of the system (5.44). Moreover, for any t>0, there exists

a constant Ka,t such that:

2. For any d>0, t>0, there exists a function K S , a , t ( N ) which goes
to 0 as N-> i such that:

Proof. In the following we work with the natural filtration generated
by the a-algebra Ft

s = a( W2
u, W

2
U, s < u < t ) . The proof is similar to that of

Lemma 5.2.

Step 1: There exists a constant ka such that, for any stopping time T:

For every p<N-1



is a F-martingale. For p = N, N + 1, N + N' — 1 we must add some correc-
tions. The proof is then very similar to that of Lemma 5.2.

Step 3: There exists a unique solution c in C([0, i), l2
a) of the

system (5.44), which also satisfies (5.46).

The proof is very similar as in the Step 3 of Lemma 5.2. We can
extract a subsequence such that co(0) - co(N) = ZN-1

j=0 co(j)-co(j+1) con-
verge in C([0, t], l2

a) to some element of this space that we express in the
form co(0) — c. Since A and Bj are continuous from l2

a into l2
a-2 (we have

to assume that a >2) c is found to be a strong solution of (3.4) in l2. The
end of the proof is the same as the one of Lemma 5.2. |

Lemma 5.5. For any N, the processes ce ,NeC([0, i), l2
a) converge

in distribution to the process cNeC([0, i), l2
a) as e-> 0.

Proof. Applying Theorem IV-6-7 in ref. 18, the processes c e - N e
C([0, i), C N + 1 ) governed by the system (5.3) converge in distribution to
the process c N e C ( [ 0 , i), C N + 1 ) solution of the system (5.45). To be very
rigorous, we need to separate the real and imaginary parts, so that we
actually deal with processes in C([0, i), R2 ( N + 1 )) . The corresponding
system then fulfils the hypotheses of Theorem IV-6-7 in ref. 18, because m
is o-mixing with oeL1/2(R + ). This yields the result. |

For any p = 0,..., N - 1, N + 2,..., N + N' - 1:

which yields the desired result since ||cN
0||a< ||c0||a.

Step 2: For any s>0, t>0 there exists a function K S , a , t ( N ) which
goes to 0 as N -> i such that:

is a F-martingale, where h1 has been defined in (5.6). For p = N, M n
n ( t ) —

2 y ( N + 1 ) f t
0 | c N

N | 2 ( t ' ) dt is a F-martingale. Let T be a stopping time. We
then get from (5.11) and (5.13) that:
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Proposition 5.8. The process Ce is tight in D([0, i), l2
a).

Proof. We shall prove on the one hand that c e ( t ) is tight in l2
a for any

t and on the other hand that c8 satisfies the Aldous property, which estab-
lishes the result by Lemma 5.6.

Step 1: ce(t) is tight in l2
a for any t>0.

From Lemma 5.2, we have:

Since cp
e,N = 0 for p > N + 1 , we have

which implies that ce(t) is tight in l2
a by Lemmas 5.2 and 5.7.

where T is a stopping time and supT is the sup over all such T<T 0 — S,
then the family (X e ) e e ( 0 , 1 ) is tight in D([0, T0]), E).

If the processes Xe are continuous, then [A] is necessary for tight-
ness. |

Lemma 5.7. Let H be a separable Hilbert space and HN be an
increasing sequence of finite-dimensional spaces in H such that, for any
h e H, limN-i nHNh = h. Let Ye be a H-valued process. Ye is tight if and
only if for any n > 0 and y > 0, there exists pn and a subspace HN(n,y) such
that

5.3. Tightness

We begin by stating some standard tightness criteria.(19)

Lemma 5.6. Let (E, d) be a Polish space, Xe a process with paths
in D([0, T0] ,E). If for every t in a dense subset of [0, T0] the family
( X e ( t ) ) e e ( o , 1 ) is tight in E and Xe satisfies the Aldous property.

For any n > 0, y > 0, there exists 6 > 0 such that
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and estimating the first and third terms of the right-hand member, we
obtain that, for any M > 0:

5.4. Convergence of the Finite-Dimensional Distributions

Proposition 5.9. The finite-dimensional distributions of ( c e ( t ) ) t > o

converge in distribution in l2
a to the corresponding ones of ( c ( t ) ) t > 0 .

Proof. Let us fix some meN. Let F be a continuous and bounded
function from l2xm

a into R. Let t1< ... <tm be m nonnegative real num-
bers. We want to prove the weak convergence of F(ce(t1),..., ce(tm)) (that
we denote by F(ce)) towards F ( c ( t 1 ) , . . . , c ( t m ) ) (that we denote by F(c)).
Expanding the difference Ae := |E[F(ce)] - E[f(c)]| as follows:

which finally establishes that

Let n be some positive number. We choose some N0 such that K y / 4 , a , T 0(N0)
<n/4. From Lemma 5.5, ce ,N0 is tight in C([0, T0], l

2
a), so that there exists

some S>0 such that:

Step 2: c£ satisfies the Aldous property.

Let T0 > 0 and y>0. Applying Lemma 5.2, we have for any 0<1, for
any stopping time T<T 0 - 0 and for any e e (0, 1):
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If iA = Z c p , q , r f p , q , r , then we have:

Taking first the limit N -> i in the right-hand member, then the limit
s->0, and finally M-> i, we establish the desired result. |

APPENDIX A: PROOF OF PROPOSITION 2.2

From the recursion relations amongst the Hermite polynomials,(20) we
get that:

Taking the limsup as e ->0 and using Lemmas 5.2, 5.4 and 5.5,
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where (01,xc)p,q , r:=/p +1 cp + l , q , r , and ( 0 - 1 , x c ) p , q , r : = ^fp c p - 1 , q , r

and 0j,y (resp. 0J,z) acts on the q-index (resp. r-index). Straightforward
estimates then show that:

Expanding (s—d/d£) a and using Minkowski's inequality proves that:
||c||2a< ||A||2a. On the other hand,
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